Water Saturation from Electric Logs

Mike Millar

BG Group
(a subsidiary of Royal Dutch Shell plc)

London Petrophysical Society
One-day Seminar
“Petrophysics 101"
Thursday 17th March 2016
Water Saturation from Electric Logs

Outline

• What is Water Saturation and why do we care?
• Fluid Levels within the Reservoir
• Formation water
 – what is it composed of?
• Resistivity logging
 – $R_t = R_o$, water-leg
 – $R_t << R_o$, hydrocarbons
• Archie’s equations
 – and using then to calculate Water Saturation
• When doesn't Archie work?
 – thin beds, shaly sands, fresh water etc
• What else helps us quantify water saturation?
 – PNC, NMR, Dielectric, Core
• Summary
What is Water Saturation and why do we care?

- Water within the pore space
 - (other fluids include Oil, Gas, Condensate, CO$_2$, H$_2$S)
- Water Saturation is Water Volume / Pore Volume

- Sw is a major input to Hydrocarbon Volumes Calculations
- STOOIP = (GRV * N:G * Φ * (1-Sw)) / Bo
 - Φ = porosity;
 - 1 - Sw = pore space filled with hydrocarbon
- There is a similar equation for Gas in-place
Fluid Distribution within the Reservoir

- Hydrocarbons are less dense than water, and migrate upwards until they are trapped, displacing the most of the formation water in the reservoir.
- Migrating gas or oil displaces the water from the bigger capillaries first so reservoir quality has a major impact on hydrocarbon saturation.
- FWL, free water level, is where P_c, capillary pressure, is zero.
- OWC/GWC, oil/gas water contact, first occurrence of hydrocarbons.
- Difference between FWL and OWC is Entry Pressure Height.
- Transition zone, interval between OWC and Irreducible Water Saturation.
- Swir - Irreducible Water Saturation, when no more water can be displaced.

![Diagram showing fluid distribution and key terms](image-url)
What is Formation Water Composed of?

- Generally water and dissolved salts in varying amounts,
 - dissolved salts are important for Sw calculations
- An example water analysis showing what salts can be in formation water, not just Sodium Chloride.
 - API RP45 is the standard for water analysis in the Oil Patch
- Rw is formation water resistivity
- Rw varies with temperature (Arps equation)

API Water Analysis

<table>
<thead>
<tr>
<th>Whole Sample Properties</th>
<th>Slightly hazy grey water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance before filtration</td>
<td>Gently turbid</td>
</tr>
<tr>
<td>Appearance after filtration</td>
<td>Clear colourless water</td>
</tr>
<tr>
<td>Total dissolved solids (mg/l)</td>
<td>69,280</td>
</tr>
<tr>
<td>Specific gravity at 60/60 deg F</td>
<td>1.044</td>
</tr>
<tr>
<td>Determined Resistivity (Ohmm at 60 deg F)</td>
<td>0.143</td>
</tr>
<tr>
<td>Hydrogen Sulphide</td>
<td>Not detected</td>
</tr>
<tr>
<td>pH at 20 deg.C</td>
<td>7.03</td>
</tr>
</tbody>
</table>

Components

<table>
<thead>
<tr>
<th>Cations</th>
<th>mg/litre</th>
<th>mg/litre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium</td>
<td>25540</td>
<td>1110</td>
</tr>
<tr>
<td>Potassium</td>
<td>770</td>
<td>20</td>
</tr>
<tr>
<td>Calcium</td>
<td>245</td>
<td>11</td>
</tr>
<tr>
<td>Magnesium</td>
<td>135</td>
<td>11</td>
</tr>
<tr>
<td>Barium</td>
<td>205</td>
<td>30</td>
</tr>
<tr>
<td>Strontium</td>
<td>150</td>
<td>30</td>
</tr>
<tr>
<td>Total Iron</td>
<td>5.3</td>
<td>5.3</td>
</tr>
<tr>
<td>Dissolved Iron</td>
<td>0.15</td>
<td>0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anions</th>
<th>mg/litre</th>
<th>mg/litre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride</td>
<td>40170</td>
<td>1130</td>
</tr>
<tr>
<td>Sulphate</td>
<td>33</td>
<td>0.68</td>
</tr>
<tr>
<td>Bicarbonate</td>
<td>1800</td>
<td>30</td>
</tr>
<tr>
<td>Carbonate</td>
<td>nil</td>
<td>nil</td>
</tr>
<tr>
<td>Hydroxide</td>
<td>nil</td>
<td>nil</td>
</tr>
</tbody>
</table>

Additional Components

<table>
<thead>
<tr>
<th>Component</th>
<th>mg/litre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boron</td>
<td>56</td>
</tr>
<tr>
<td>Aluminium</td>
<td>< 0.50</td>
</tr>
<tr>
<td>Silicon</td>
<td>26</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>0.51</td>
</tr>
<tr>
<td>Lithium</td>
<td>22</td>
</tr>
</tbody>
</table>

Comments
The analysis has shown the sample to be predominantly formation water
* Sulphate results calculated from total Sulphur determined by inductively coupled plasma emission spectrometry.
How do we quantify water saturation?

From logs

- Resistivity measurements using Archie based equations

- Other logs (all shallow reading tools)
 - Pulsed Neutron Capture (still salinity dependant)
 - Magnetic Resonance (sort of)
 - Dielectric permittivity (just the flushed zone really)

- Also from core
Resistivity Logs

- **Measures electrical conductivity due to:-**
 - Brine in the pore space
 - Capillary bound water
 - Water in shales
- Hydrocarbons and Matrix are mostly non-conducting, but there are some conductive minerals
- Resistivity is the inverse of Conductivity

Laterolog
- Lower frequency (35Hz)
- Needs a conductive path to the formation.
- Slightly better Vertical Resolution
- Can read up to 20,000 Ohmm.
- 6ft+ depth of investigation.

Induction
- Higher Frequency(20+KHz)
- Works in OBM and air filled holes
- Vertical Resolution poor, but Array tools are comparable to laterolog.
- Accurate up to 100 - 200 Ohmms
- 4-8+ ft depth of investigation

A Plethora of Options
- Current tools generally Array type
- LWD multi-frequency
Resistivity Logging - operational considerations

Drilling fluid (mud) effects.
- Mud filtrate invades the rock pores near the well, displacing the natural fluids
- Changes the fluid and formation resistivity
- Solids in the invading mud may leave a mud cake on the borehole wall 0.5+" thick

- Flushed Zone:
 - R_{xo} - flushed zone resistivity
 - S_{xo} - flushed zone water saturation
 - R_{mf} - mud filtrate resistivity

- Undisturbed zone
 - R_t - true formation resistivity
 - S_w - water saturation
 - R_w - formation water resistivity

Mud invasion schematic.
Diameter of invasion (D_i) is highly variable, difficult to estimate, but of the order of a few inches to a few feet. Assumed to be symmetrical around the borehole.
Archie Equations for Water Saturation

\[S_w^n = \frac{R_o}{R_t} \quad \text{and} \quad R_o = F \times R_w \]

where

\[F = \frac{1}{\Phi^m} \quad \text{(also} \quad F = \frac{a}{\Phi^m}) \]

so

\[S_w^n = F \cdot \frac{R_w}{R_t} \quad \text{and} \quad S_{hc} = 1 - S_w \]

- \(m\) is the Formation Factor exponent
- \(n\) is the Saturation exponent
- Archie found \(a=1.0\), \(m=2.00\) and \(n=2.00\)

- \(R_w\) is formation water resistivity
- \(R_o\) and \(R_t\) are resistivity of the formation (including rock and fluids)
- \(R_o\) is rock fully saturated with water of \(R_w\)
- \(R_t\) is rock partially saturated with water of \(R_w\)
- the ratio, \(R_t/R_o\), is proportional to the water saturation
- the ratio \(R_o/R_w\) is Formation Factor - \(F\)
The Archie Equations - Some Important Assumptions

- **Rt** is the true formation resistivity.
- **Rt = Ro** when all the pores are filled with water.
- The current travels through the water
 - the water has some dissolved salts.
- The matrix is non-conductive.
- Formation water salinity is constant.
- **Rw** varies with temperature only
- Porosity is the void space available for fluids.
The Archie Formation Factor

• what is it?

"A study of the resistivity of formations when all the pores are filled with water is of basic importance in the detection of oil or gas by the use of an electrical log. Unless this value is known, the added resistivity due to oil or gas in a formation cannot be determined."

• This really relates to the water-leg

• Formation Factor, F, is the ratio of Ro to Rw
• and it is also a function of Porosity
• so F = Ro/Rw and F = 1 / Φ^m

• m is the Formation Factor exponent
• It is related to pore geometry
 • aka porosity exponent
 • aka cementation exponent

• F = Ro/Rw and F = 1 / Φ^m
• and Ro = Rw/ Φ^m
• later F = a / Φ^m where a is the Tortuosity factor
• Archie; a=1 and m=2
• Humble; a=0.62 and m=2.15
The Archie Formation Factor Exponent

• how is it determined?

• $F = \frac{Ro}{Rw}$ and
• $F = \frac{1}{\Phi^m}$
• later $F = a / \Phi^m$

• Laboratory measurements of; Ro, Rw and Φ
• F determined from Ro/Rw
• and cross-plotted against Φ
• slope is -m
• forced regression gives $a = 1$
• free regression generally a is not 1

• Not just core, but from logs in a water-leg
• Pickett Plot to derive aRw and m
• In the water-leg $Ro = Rt$ and as
• $F = \frac{Ro}{Rw}$ and $F = \frac{1}{\Phi^m}$
• $Ro = \frac{Rw}{\Phi^m}$
• Ro is cross-plotted against Φ (log-log x-plot)
• slope is -m
• intercept with 100% porosity is aRw
The Archie Saturation Exponent
• what is it and how is it determined?

"Various investigators have studied the variations in the resistivity of sands due to the percentage of water contained in the pores....the following approximate equation applies..."

• Now up into the Hydrocarbon-leg.......

• \[S_w^n = \frac{R_o}{R_t} \]

• and \(R_o = \frac{R_w}{\Phi^m} \)

• Resistivity Index, RI is the ratio of \(R_t \) to \(R_o \)
• Archie showed that \(S_w^n = \frac{R_o}{R_t} \)
• and as \(R_o = F.R_w \) then \(S_w^n = F.R_w /R_t \)

• Laboratory measurements of \(R_o, R_t \) and \(S_w \)
• RI cross-plotted against \(S_w \), the slope is -n
• n is the Saturation Exponent
So for Archie Saturation we need;
- Rt and Porosity (from logs)
- Rw - at the right temperature
- a, m and n

\[F = \frac{1}{\Phi^m} \]

also \[F = \frac{a}{\Phi^m} \]

\[S_w^n = \frac{F.R_w}{R_t} \]
Does Archie Really Work?

Water Saturation from Dean-Stark extracted core compared to Archie derived Sw suggests that yes it does in many cases.
"It should be remembered that the equations given are not precise and represent only approximate relationships."

So what makes Archie stop working?

- conductive “matrix” - clays, pyrite
 - Excess Conductivity or Shaly sands
- beds thinner than the resolution of the Resistivity logs
- fresh formation water (or other non-conductive fluids)
- large variability in pore size - vugs, fractures
- variable formation water salinity
- variably rock wettability

Pore filling Illite.

Laminated sand and shale

Vugs

Fresh water
Excess Conductivity or Shaly sands

- Archie Clean Sand Equation: \(S_w^n = F.R_w / R_t \)
- An example of a Shaly Sand Equation:
 - Simandoux - \(S_w^n = F.R_w \times (1/R_t - (V_{sh} \times S_w)/R_{sh}) \)

- Shaly Sand Equations (using Effective Porosity):
 - Requires additional parameters;
 - Shale Volume - \(V_{sh} \)
 - Shale Resistivity - \(R_{sh} \)
 - Shale Porosity - \(\Phi_{sh} \)
 - How can these be determined?
 - Is that Clay or is that Shale?
 - How is the Shale/Clay distributed?

Excess Conductivity or Shaly sands

- Waxman-Smits Shaly Sand Equation:
 \[S_w^n = \frac{R_t/F.R_w}{1 + R_w \cdot B \cdot Q_v/S_w} \]

- Using Total Porosity and based on core data

- B related to Rw

\[
B = \frac{-1.28 + 0.225 \times T - 0.0004059 \times T^2}{1 + R_w^{1.23} (0.045 \times T - 0.27)}
\]

- Qv related to clay conductivity, can be measured from core
 - Derive Qv from Co/Cw plot
 - Core plug fully saturated with water with known Cw
 - Measure plug conductivity Co, repeat with changing Cw

What stops Archie working?
Resistivity in Thin Beds

- The scale of the Geology is below the ability of the logging tool to resolve significant details.
- Deep Resistivity tools have poor vertical resolution
- Often considered as a Shaly Sand problem

\[R_{\text{shale}} = 1 \text{ Ohmm} \]
\[R_{\text{sand}} = 10 \text{ Ohmm} \]
What makes Archie stop working?

- 'fresh' formation water
- little or no dissolved salts
- little or no contrast between Ro and Rt
What else helps us quantify water saturation?

Cased-hole Pulsed Neutron Capture (Sigma) Logs

- PNC tools emits regular pulses of neutrons and measures the rate at which thermal neutrons are captured, by detection of GR emitted during the capture.

- Interpreting Sigma Curve (Σ)
 - $\Sigma \log = (1 - \Phi) \sum \text{matrix} + Sw \Phi \sum \text{water} + (1 - Sw) \Phi \sum \text{hc}$

- Input Parameters
 - Sigma Water
 - varies with salinity (as Chlorine does most of the capturing)
 - but which water - formation or injection?
 - Sigma Oil
 - Sigma Matrix

<table>
<thead>
<tr>
<th>Material</th>
<th>τ (msec)</th>
<th>Computed Sigma @ 20°C (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh Water (H₂O)</td>
<td>205</td>
<td>22.2</td>
</tr>
<tr>
<td>Salt Water</td>
<td>152-36</td>
<td>30-130</td>
</tr>
<tr>
<td>Oil</td>
<td>228</td>
<td>20</td>
</tr>
<tr>
<td>Gas</td>
<td>910</td>
<td>5</td>
</tr>
<tr>
<td>Sandstone</td>
<td>Apparent Sigma</td>
<td>8.0-10.0</td>
</tr>
<tr>
<td>Limestone</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>Dolomite</td>
<td>6.0</td>
<td></td>
</tr>
</tbody>
</table>
What else helps us quantify water saturation?
Magnetic Resonance Tools

- we can use Free Fluid and Capillary Bound Water to calculate Swir
 \[\text{Swir} = \frac{\text{CBW}}{\text{CBW} + \text{FF}} \]
- But assumes that FF is all hydrocarbons, so doesn't work in the transition zone nor water-leg without other logs.
- NMR tools are also generally shallow reading and can be effected by Gas.

![T2 cutoff](image)

<table>
<thead>
<tr>
<th>Rock Bulk Volume</th>
<th>Total Porosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minerals</td>
<td></td>
</tr>
<tr>
<td>Rock Matrix</td>
<td>Clay bound water</td>
</tr>
<tr>
<td>Clay</td>
<td>Free water</td>
</tr>
<tr>
<td>Hydrocarbons</td>
<td></td>
</tr>
<tr>
<td>Effective Porosity</td>
<td></td>
</tr>
</tbody>
</table>
What else helps us quantify water saturation?
Dielectric Tools

- **Dielectric permittivity, \(\varepsilon \), is:**
 - A physical quantity that describes how an electric field affects, and is affected by a dielectric medium,
 - Is determined by the ability of a material to polarize in response to the field, thereby reduce the total electric field inside the material.
 - Thus, permittivity relates to a material’s ability to transmit (or "permit") an electric field.

- **Big contrast between water and oil**
 - Oil : \(\varepsilon \sim 2 \)
 - Rock : \(\varepsilon \sim 5-9 \)
 - Water : \(\varepsilon \sim 50-80 \)

- **Water \(\varepsilon \) varies with salinity and frequency**
- **Good resolution, but shallow reading, (new tools 1in to 4in); therefore Sxo and not Sw**
What else helps us quantify water saturation?

- Directly from core - Dean-Stark extraction
 - Core with Oil Base Mud
 - Works Best in Oil-leg

with thanks to Dr Colin McPhee.
Water Saturation from Electric Logs

Outline

• What is Water Saturation and why do we care?
• Fluid Levels within the Reservoir
• Formation water
 – what is it composed of?
• Resistivity logging
 – \(R_t = R_0, \text{ water-leg} \)
 – \(R_t \gg R_0, \text{ hydrocarbons} \)
• Archie’s equations
 – and using then to calculate Water Saturation
• When doesn't Archie work?
 – thin beds, shaly sands, fresh water etc
• What else helps us quantify water saturation?
 – PNC, NMR, Dielectric, Core
• Summary
Water Saturation from Electric Logs - some useful stuff

http://petrowiki.org/PetroWiki
http://imis.spwla.org/ - then Technical - Glossary
http://www.glossary.oilfield.slb.com/

<table>
<thead>
<tr>
<th>Term</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>unitless</td>
<td>Archie 'tortuosity' factor</td>
</tr>
<tr>
<td>B</td>
<td>(1/ohmm)/(meg/ml)</td>
<td>Specific cation conductance</td>
</tr>
<tr>
<td>Φ</td>
<td>fraction/%age</td>
<td>Porosity</td>
</tr>
<tr>
<td>F</td>
<td>unitless</td>
<td>Formation factor</td>
</tr>
<tr>
<td>FWL</td>
<td>metres/feet</td>
<td>Free water level, is where Pc is zero</td>
</tr>
<tr>
<td>GWC</td>
<td>metres/feet</td>
<td>Gas water contact, first occurrence of hydrocarbons</td>
</tr>
<tr>
<td>HAFWL</td>
<td>metres/feet</td>
<td>Height above free water level</td>
</tr>
<tr>
<td>m</td>
<td>unitless</td>
<td>Formation Factor exponent</td>
</tr>
<tr>
<td>n</td>
<td>unitless</td>
<td>Saturation exponent</td>
</tr>
<tr>
<td>OWC</td>
<td>metres/feet</td>
<td>Oil water contact, first occurrence of hydrocarbons</td>
</tr>
<tr>
<td>Pc</td>
<td>psi/bar</td>
<td>Capillary pressure</td>
</tr>
<tr>
<td>Qv</td>
<td>meq/ml</td>
<td>Cation exchange capacity per unit of pore volume</td>
</tr>
<tr>
<td>RI</td>
<td>unitless</td>
<td>Resistivity index</td>
</tr>
<tr>
<td>Rm</td>
<td>Ohmm</td>
<td>Mud resistivity</td>
</tr>
<tr>
<td>Rmc</td>
<td>Ohmm</td>
<td>Mud cake resistivity</td>
</tr>
<tr>
<td>Rmf</td>
<td>Ohmm</td>
<td>Mud filtrate resistivity</td>
</tr>
<tr>
<td>Ro</td>
<td>Ohmm</td>
<td>Resistivity of rock fully saturated with water</td>
</tr>
<tr>
<td>Rsh</td>
<td>Ohmm</td>
<td>Shale Resistivity</td>
</tr>
<tr>
<td>Rt</td>
<td>Ohmm</td>
<td>True formation resistivity</td>
</tr>
<tr>
<td>Rw</td>
<td>Ohmm</td>
<td>Formation water resistivity</td>
</tr>
<tr>
<td>Rxo</td>
<td>Ohmm</td>
<td>Flushed zone resistivity</td>
</tr>
<tr>
<td>Sw</td>
<td>fraction/%age</td>
<td>Water saturation</td>
</tr>
<tr>
<td>Sxo</td>
<td>fraction/%age</td>
<td>Flushed zone water saturation</td>
</tr>
<tr>
<td>Vsh</td>
<td>fraction/%age</td>
<td>Shale Volume</td>
</tr>
</tbody>
</table>